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Abstract With the popularity of mobile computing and social media, various kinds
of online event-based social network (EBSN) platforms, such as Meetup, Plancast and
Whova, are gaining in prominence. A fundamental task of managing EBSN platforms
is to recommend suitable social events to potential users according to the follow-
ing three factors: spatial locations of events and users, attribute similarities between
events and users, and friend relationships among users. However, none of the exist-
ing approaches considers all the aforementioned influential factors when they rec-
ommend users to proper events. Furthermore, the existing recommendation strategies
neglect the bottleneck cases of the global recommendation. Thus, it is impossible for
the existing recommendation solutions to be fair in real-world scenarios. In this paper,
we first formally define the problem of bottleneck-aware social event arrangement
(BSEA), which is proven to be NP-hard. To solve the BSEA problem approximately,
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we devise two greedy heuristic algorithms, Greedy and Random+Greedy, and a local-
search-based optimization technique. In particular, the Greedy algorithm is more effec-
tive but less efficient than the Random+Greedy algorithm in most cases. Moreover,
a variant of the BSEA problem, called the Extended BSEA problem, is studied, and the
above solutions can be extended to address this variant easily. Finally, we conduct extensive
experiments on real and synthetic datasets which verify the efficiency and effectiveness of
our proposed algorithms.

Keywords Event-based social networks · Social networks · Assignment problem

1 Introduction

In recent years, with the widespread usage of mobile computing and pervasive computing,
all kinds of new social media techniques are emerging [12, 26]. In particular, various event-
based social networks (EBSNs) [13, 23, 24, 27] are getting popular. Recent success stories
include Meetup,1 Plancast,2 and Eventbrite.3 For example, on Meetup, organizers can create
different activities, such as career day, social parties, etc., and users can register and attend
these activities according to the recommendations from Meetup. Furthermore, Eventbrite is
another social event platform for organizers to share information of activities to potential
participants. To sum up, EBSNs provide a novel approach for facilitating online users to
organize and manage offline social activities.

Unfortunately, most existing EBSNs are only simple information sharing platforms about
social activities and do not provide an intelligent and global arrangement for social activi-
ties and potential users. Thus, how to design a global arrangement strategy in EBSNs has
become a fundamental issue and attracted much attention in the database and data mining
communities recently. Li et al. [14] introduces the social event organization (SEO) problem,
which is to assign users to activities to maximize the overall innate and social affinities.
However, this work only considers two factors, the similarity of attributes and social friend-
ship among users, for the assignment and neglects the spatial influence between activities
and users. Imagine the following scenario. Being a shutterbug and hiking enthusiast, Tony
intends to attend photographic and hiking activities organized by Meetup on the coming
Saturday. According to the solution of [14], Meetup recommends him the following two
related activities: a hiking activity and a photographic party. Although Tony is interested in
both activities and has friends in each activity, he has to spend at least 3 hours by taxi to
the hiking place from his home and only 0.5 hour to the photographic party venue. Tony
faces a dilemma if the arrangement ignores the influence of spatial information. Clearly, the
solution of [14] cannot handle the aforementioned scenario and may recommend the hik-
ing activity to Tony. In fact, Tony prefers to attend the photographic party due to its short
spatial distance. Therefore, a reasonable arrangement strategy in EBSNs should seamlessly
integrate the following three factors: the location influence between activities and users, the
similarity of attributes between activities and users, and the social friendship among users.

Moreover, organizers of each activity always hope to recruit as many interested users
for their activity as possible. However, existing social network recommendation systems

1http://www.meetup.com/
2http://plancast.com
3http://www.eventbrite.com/

http://www.meetup.com/
http://plancast.com
http://www.eventbrite.com/
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usually adopt recommendation strategies for each single activity instead of providing
globally optimal arrangements. Since each user only attends one activity at the same
time, it easily results in that some activities only attract few attendees but participants
in other activities are excess. A possible global goal may be to maximize the average
utility value of all the activities in the platform. However, in this case, the activities
whose utility values are below-average may not be satisfied since the utility values of
these activities may be arbitrarily low without any guarantee. In other words, many activ-
ities may not be organized well and their organizers will be unhappy. Therefore, in
order to satisfy all the registered activities in EBSN, a reasonable global goal is to find
the optimized arrangement that maximizes the minimum normalized utility of activities.
The utility should take all the aforementioned three factors into consideration. In other
words, this optimized goal can keep balance of the satisfactions of different activities in a
global view.

Therefore, a new social event arrangement strategy should not only consider the afore-
mentioned three influential factors, location information, similarity of attributes and social
friendship, but should also guarantee a balanced satisfaction of different activities in a
globally optimal perspective. In the following, we illustrate a toy example to explain our
motivation in details.

Example 1 Suppose we have two activities (a1−a2) and six users (u1−u6) in an EBSN. We
also assume that each activity/user includes a profile, which consists of a list of attributes.
For an activity, the corresponding attributes show the category and core tags, etc., of this
activity. Similarly, the attributes of users represent preferences of users. According to the
attributes of activities and users, we can obtain the similarity of interests between each pair
of them. Furthermore, each activity includes a capacity, which is the maximum number
of participants. In this example, the capacities of a1 and a2 are 4 and 3, respectively (in
brackets). In addition, Figure 1a shows the locations of the two activities (a1 − a2) and the
six users (u1 − u6), and we use Euclidian distance to calculate the spatial utility among
them. Figure 1b represents the social friendship among six users (u1 − u6). If we assume

Figure 1 Location Information and Friendship
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that the utility function between a pair of activity and user is the linear interpolation of the
normalized factors between their location influence and attribute similarity, the optimal goal
is to maximize the minimum normalized utility of one activity such that each assigned user
in this activity has at least a friend in Figure 1b, who is also assigned to the same activity.
We present the utility score between each pair of activity and user in Table 1. A feasible
arrangement is shown in bold fonts in Table 1, where the minimum normalized utility score
of activity is 0.493 (a2).

As discussed in the motivation example, a novel social event arrangement strategy, called
bottleneck-aware social event arrangement (BSEA), is introduced. Specifically, given a set
of activities and a set of users, each activity includes the location information, the attributes
and the capacity, and each user has the location information, the attributes and the cor-
responding social friendship, the BESA problem is to find an arrangement, such that the
minimum normalized utility score of all assigned users to one activity is maximized, while
the capacity and social friendship constraints are satisfied. In this paper, the social friend-
ship constraint is specified that each user in one activity has at least one friend in the social
graph, who is also assigned to the same activity.

If the aforementioned capacity and social friendship constraints are omitted, the ESBA
problem can be reduced to a classical problem, bottleneck assignment problem [2]. Even
if the ESBA problem is similar to the traditional bottleneck assignment problem, they are
essentially different from the computational complexity view. The bottleneck assignment
problem can be solved by several classical polynomial-time algorithms, e.g. the threshold
algorithm [7]. However, the ESBA problem is NP-hard due to the two additional constraints.
The capacity condition makes the bottleneck assignment problem a many-to-many assign-
ment problem. Moreover, the social friendship constraint also increases the computational
complexity. Therefore, the two new conditions are the main challenges to solve the ESBA
problem. To the best of our knowledge, our work is the first study about the ESBA problem.
In particular, we make the following contributions.

– We introduce a new social event arrangement problem and propose the formal defini-
tions of the bottleneck-aware social event arrangement (BSEA) problem and a variant
of the BSEA problem.

– We prove that the BSEA problem and its variant are NP-hard, respectively.
– For the BSEA problem, we devise a baseline algorithm, two heuristic algorithms,

Greedy and Random+Greedy, and a local-search-based optimization technique.
In particular, the Greedy algorithm is more effective but less efficient than the
Random+Greedy algorithm in most cases. Furthermore, the aforementioned solutions
can be extended to address the variant of the BSEA problem easily.

– We conduct extensive experiments on real and synthetic datasets which verify the
efficiency and effectiveness of our proposed algorithms.

The rest of the paper is organized as follows. In Section 2, we formally formulate
the BSEA problem and its variant, called the Extended ESEA problem. In Section 3,

Table 1 Utility between activities and users

u1 u2 u3 u4 u5 u6

a1 (4) 0.79 0.72 0.80 0.76 0.92 0.62

a2 (3) 0.67 0.68 0.51 0.67 0.80 0.53
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for the BSEA problem, we devise a baseline algorithm, two greedy heuristic algorithms,
and a local-search-based optimization technique. Moreover, the corresponding algorithms
extended by the aforementioned solutions are proposed to address the Extended ESEA
problem in Section 4. Section 5 shows extensive experiments on both synthetic and real
datasets. The related works are reviewed in Section 6. We finally conclude this paper in
Section 7.

2 Problem statement

We first introduce several basic concepts and then formally define the bottleneck-aware
social event arrangement (BSEA) problem.

Definition 1 (Activity) An activity is defined as a =< la, ta, δa > where la =< l1
a, l2

a >

is a 2-dimensional vector used to represent the longitude and the latitude of the activity,
ta =< t1

a , t2
a , · · · , tda > with t ia ∈ [0, T ], ∀1 ≤ i ≤ d is a d-dimensional vector used

to record attribute values of the activity, and δa is the capacity of the activity, namely the
maximum number of attendees (participants) of the activity.

Definition 2 (User) A user is defined as u =< lu, tu > where lu =< l1
u, l2

u > is a 2-
dimensional vector used to represent the location of the user, and tu =< t1

u, t2
u, · · · , tdu >

with t iu ∈ [0, T ], ∀1 ≤ i ≤ d is a d-dimensional vector to describe attribute values of the
user.

Definition 3 (Social Network) Given a social network G = (U, F ), where each vertex
u ∈ U is a user, and any two users (vertices) u and v are connected by an edge eu,v ∈ F if
and only if they are friends mutually.

For any feasible arrangement M of the activities and users, we denote m(a, u) = 1 or
{a, u} ∈ M as that user u is assigned to activity a, and m(a, u) = 0 or {a, u} /∈ M as that u

is not assigned to a. We then define the utility of an assigned pair of activity and user.

Definition 4 (Utility Function) Given a set of activities A and a set of users U , the util-
ity that the user u ∈ U is assigned to the activity a ∈ A is measured by the following
function

μ(a, u) = α

(
1 − D(la, lu)

̂MaxD

)
+ (1 − α)sim(ta, tu) (1)

where α ∈ [0, 1] is a parameter used to balance the spatial distance and the attribute simi-
larity; the spatial distance between a and u is measured by Euclidian distance D(la, lu) and
is normalized by ̂MaxD = MaxD + ε, where MaxD is the maximum distance between
any activity and any user, and ε is an arbitrary small positive real number. Furthermore,
the attribute similarity can be calculated by any well-known similarity function, e.g. Cosine
similarity, Jaccard distance, Overlap distance, etc. In this paper, we choose Cosine similarity
as our similarity function, which is shown as follows.

sim(ta, tu) = ta · tu√|ta | · |tu| (2)

According to the aforementioned utility function, we define the concept of normalized
utility of an activity.
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Definition 5 (Normalized Utility of An Activity) Given an activity a, a set of users U and
an arrangement M , the normalized utility of a is represented by the following equation

AveM(a) =
∑

u∈U,(a,u)∈M μ(a, u)

δa

(3)

where δa is the capacity of the activity a.

We define our BSEA problem as follows.

Definition 6 (BSEA Problem) Given a set of activities A, each a of which is associated
with location la , attributes ta , and capacity δa , a set of users U , each u of which is associated
with location lu and attributes tu, and a social network G = (U, F ), the BSEA problem
is to find an arrangement M among the activities and users to maximize minai∈A{Ave(ai)}
such that

–
∑

u m(a, u) ≤ δa, ∀a ∈ A

– Each user u ∈ M(a) has at least one another user v ∈ M(a) such that e(u, v) ∈ F,

∀a ∈ A

In particular, we call the activity with the smallest normalized utility score, i.e.
arg minai∈A{Ave(ai)}, the bottleneck activity. The notations of symbols are summarized in
Table 2. And we have the following theorem that states the hardness of the BSEA problem.

Theorem 1 The BSEA problem is NP-hard.

Proof In order to complete the proof, we reduce the PARTITION problem, which is a well-
known NP-complete problem [8], to the BSEA problem. The following is an instance of the

Table 2 Summary of symbol notations

Notation Description

A = {a1, · · · , a|A|} the set of activities

la =< l1
a , l2

a > the longitude and the latitude of a

ta =< t1
a , · · · , tda > the attribute values of a

δa the capacity of a

δu the capacity of u

U = {u1, · · · , u|U |} the set of users

lu =< l1
u, l2

u > the longitude and the latitude of u

tu =< t1
u, · · · , tdu > the attribute values of u

G = (U, F ) the social network based on the set of users U

MaxD the maximum distance between any activity and any user
̂MaxD MaxD + ε

sim(ta, tu) the cosine similarity between attribute values of a and u

μ(a, u) the utility between a and u

M a social event arrangement

AveM(a) the normalized utility of a in the arrangement M
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PARTITION problem. Given a set of n positive integers S = {s1, s2, · · · , sn} and a function
σ(X) = ∑

x∈X x, the PARTITION problem is to decide if S can be partitioned into two
subsets S1 and S2 such that σ(S1) = σ(S2) = 1

2σ(S).
We then construct an instance with two activities of the BSEA problem from the instance

of the PARTITION problem accordingly:
(1) The two partitioned sets, S1 and S2, correspond to the two activities, a1 and a2,

respectively. Furthermore, let δa1 = δa2 = n, where n is the number of positive integers
in S.

(2) Each positive integers si in the set S corresponds to a user ui in U such that
μ(a1, ui) = μ(a2, ui) = si

maxj {sj } where μ(·, ·) is the utility score between the activity and
the user.

(3) All users are mutually friends.

Let a parameter K = σ(S)
2n×maxj {sj } , where maxj {sj } is the maximum positive integer in

the set S consisting of n positive integers, which is used to normalize the utility values to
[0, 1]. The corresponding decision problem of the BSEA problem, in the given instance,
is to decide whether min{Ave(a1), Ave(a2)} is equal to K . Thus, it is easy to see that
the instance of the PARTITION problem is YES if and only if the instance of the BSEA
problem is YES. In general, if a decision problem is an NP-Complete problem, then the
corresponding optimization problem is NP-Hard. Therefore, the BSEA problem is NP-Hard,
which completes the proof.

In the aforementioned BSEA problem, each user is required to attend one activity
only. In some real-world scenarios, however, some users hope to attend multiple activities.
Therefore, we present an extended BSEA problem where each users can attend multiple
activities.

Definition 7 (Extended BSEA Problem) Given a set of activities A, each a of
which is associated with location la , attributes ta and capacity δa , a set of users
U , each u of which is associated with location lu, attributes tu and capac-
ity δu, and a social network G = (U, F ), the extended BSEA problem is to
find an arrangement M among activities and users to maximize minai∈A{Ave(ai)}
such that

–
∑

u m(a, u) ≤ δa, ∀a ∈ A

–
∑

a m(a, u) ≤ δu, ∀u ∈ U

– Each user u ∈ M(a) has at least one another user v ∈ M(a) such that e(u, v) ∈ F in
G(U, F ),∀a ∈ A

Similar to the BSEA problem, the Extended BSEA problem is proven as an NP-hard
problem as follows.

Theorem 2 The Extended BSEA problem is NP-hard.

Proof The BSEA problem is a special case of the Extended BSEA problem when each
user’s capacity is set as one. Based on Theorem 1, we know the BSEA problem is NP-hard,
so the Extended BSEA problem is also NP-hard.
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3 Solutions for BSEA

In this section, we present solutions for the BSEA problem. We first present a baseline algo-
rithm. We then propose two non-trivial heuristic algorithms. The first heuristic algorithm
is based on a globally greedy strategy, while the second one is based on a locally greedy
strategy. More details are presented as follows.

3.1 Baseline algorithm

The baseline algorithm is based on a random strategy, in which we visit each activity a ∈ A

in a random order and find an arrangement for each such a from a set of users that are not
yet arranged again in a random way. More specifically, let A′ be a shuffle-ordered list of A,
and we visit each element ai in A′ in order. We obtain a threshold θ to indicate when we
should stop processing ai as follows.

θ =
⌊ |U |δai∑

a δa

⌋
(4)

That is, we aim to balance the numbers of users arranged to each activity according to
θ , so that to balance the Ave(a) value of each activity as much as possible. For each ai , we
process it as follows. We visit each user uj ∈ U that has not yet been arranged to any activity
with probability θ

|U | . During this process, we maintain an ordered list C(ai), which stores a
list of isolated candidate users that have been visited before. That is, ∀uk ∈ C(ai), k < j , uk

was visited before we visit uj , and uk has no friend in the set of users that we have visited,
i.e. � ∃u′ ∈ M(ai) ∪ C(ai) s.t. e(uk, u

′) ∈ F . Elements in C(ai) are stored in the order that
they were visited.
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We then process each visited uj as follows. We first check whether uj has a friend in
M(a). If uj can find its friend(s) in the set of users that have already been arranged to a,
i.e. ∃v ∈ M(a) s.t. e(uj , v) ∈ F , we safely update M(a) by adding u to M(a). Other-
wise, we check whether uj has any friend in C(ai). If uj can find its friend(s) in C(ai), i.e.
∃v ∈ C(ai) s.t. e(uj , v) ∈ F , and ai can accommodate at least two more users,
i.e. |M(ai)| + 2 ≤ δai

, we add both uj and v into M(ai) and also remove v

from C(ai). If uj is added to M(ai) successfully, we keep checking whether there
exist other friends of uj in C(ai) and add them into M(ai) until the size of M(ai)

reaches θ or δai
. The iteration for each ai terminates when the size of M(ai)

reaches θ or δai
.

We illustrate the procedure in Algorithm 1. In lines 2-15, we visit each ai ∈ A in a
random order. Then during each iteration, we visit each unarranged uj ∈ U with a certain
probability in lines 6-15. If uj has a friend in M(ai), we add it to M(ai) and try to add its
friends in C(ai). Otherwise, we try to find its friends in C(ai) in line 10. We try to add uj

with her/his friends in C(ai) to M(ai) if possible in line 11, and append uj to the tail of
C(ai) in line 13 otherwise.

Example 2 Back to our running example in Example 1. We first obtain a random shuffle
order of A, which is a2, a1. We first visit a2, and calculate θ = 2. Each u is skipped with
probability 2

3 , and u1 and u2 are skipped. We next visit u3, which has no friend in M(a2) as
M(a2) is currently empty. Thus, we push u3 to C(a2) and C(a2) =< u3 >. We then visit
u4, which has friend u3 in C(a2). Thus, we add u3, u4 to M(a2). Note that |M(a2)| = 2
reaches the threshold θ , so we continue to visit the next activity a1. The procedure continues
and we have the following final arrangement M(a1) = {u2, u5},M(a2) = {u3, u4} with
minimum normalized utility score of 0.39.

Complexity analysis There are |A| iterations in the baseline algorithm. Then during each
iteration, we visit at most |U | users. When visiting each user, we spend O(δ) time to check
its friends in M(a) and O(|U |2) time to find its friends in C(a). In overall, the worst-case
time complexity of the baseline algorithm is O(|A||U |3).

3.2 Greedy algorithm

In this section, we present a greedy-based heuristic algorithm (Greedy). Instead of vis-
iting each a in order as the baseline algorithm does, we use a globally greedy strategy
in this algorithm. More specifically, we first make an initial arrangement in a greedy
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way to avoid unnecessary cases where some activities are not arranged any user and
that the minimum normalized utility score of an activity is zero. We then continue
to make arrangement based on the initial arrangement by maintaining a heap H stor-
ing pairs of activity and user and trying to add the pair at the top of H during each
iteration. We make an initial arrangement M as follows. We maintain a list P of users in U

with at least one friend in non-descending order of their degrees, i.e. numbers of friends, in
G. That is, each user in P has degree at least one. We then visit each activity a in A in an
arbitrary order, and assign the top user utop in P , i.e. the one with the least friends in P , and
one of her/his friend to a. The friend of utop with the least degree is chosen to be assigned to
a. After assigning utop and her/his friend to a, we update elements of P in non-descending
order of their remaining degrees, i.e. numbers of unassigned friends, in G, and continue to
arrange for the next activity in A.

After the initial step, we continue to make arrangement based on M and maintain H in
the following way. H uses two keys to maintain the order of each element (a, u): one is the
current normalized utility of a Ave(a), and the other is the updated normalized utility of a

if u is added to M(a), i.e. Ave′(a) = Ave(a)|δa |+μ(a,u)
δa

. In other words, elements in H are
arranged first in ascending order of Ave(a), and then in non-descending order of Ave′(a)

if the elements have the same value of Ave(a). The intuition is that we try to arrange a new
user to an activity that currently has the lowest normalized utility value (or the one that will
still have the lowest normalized utility value even such new arrangement is made if there
are multiple activities sharing the same lowest normalized utility value), so that to increase
mina Ave(a) as much as possible. We also maintain a list Qa of users for each a, elements in
which are sorted in non-ascending order of μ(a, u). H is then initialized as follows. For each
a ∈ A, we pop the u ∈ Qa with the largest μ(a, u) w.r.t. a, i.e. u = arg maxu∈U μ(a, u).
We then push the pair (a, u) into H with keys of Ave(a) and Ave′(a) respectively. For each
a ∈ A, we maintain a C(a) as we do in the baseline algorithm.

Details of each iteration are as follows. Let (a, u) be the pair popped from H in the
current iteration. If a is not full, i.e. |M(a)| < δa , and u is not yet arranged to any activ-
ity, i.e. u /∈ M(a′), ∀a′ ∈ A, we then try to add u to M(a) as follows. If u can find its
friends in M(a), we safely add u to M(a). Otherwise, we check whether u has any friend
in C(a) as we do in the baseline algorithm. More specifically, if M(a) can accommodate
at least two more users, i.e. |M(a)| + 2 ≤ δa , and u can find its an unarranged in C(a),
i.e. ∃v ∈ C(a) s.t. e(u, v) ∈ F and v /∈ M(a′), ∀a′ ∈ A, we add both u and the first
such v (i.e. the foremost in C(a)) into M(a) and remove v from C(a). If u is success-
fully added to M(a), we find her/his friends in C(a) and re-push them in to Qa . Finally,
we push v paired with the next user with the largest utility value w.r.t. a in Qa if v is
not yet full and Qa is non-empty. The whole iteration procedure terminates when H is
empty.

We illustrate the procedure in Algorithm 2 and Algorithm 3. Algorithm 2 illustrates the
initialization procedure of M . In line 1, we construct the sorted list P of users. We then
make initial arrangement for each activity in lines 2-7. Particularly, we add the top user
in P paired with her/his friend to M in lines 3-5 and then update P accordingly in lines
6-7. Algorithm 3 illustrates the main procedure of the Greedy algorithm. In lines 1-3, we
initialize M , Qa,∀a and H . In lines 4-17, we iteratively pop a pair (a, u) from H and try to
update M and H . Specifically, we check whether a is full and whether u has been arranged
in line 6, and add u to M(a) if u has a friend in M(a) in line 8. Otherwise, we check whether
u has an unarranged friend in C(a) and add u and its first friend in C(a) into M(a) if the
friend exists in line 11. If u has no friend in C(a), it is appended to the tail of C(a) in line
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13. If u is added to M(a) in the current iteration, we try to find its unarranged friends in
C(a) and re-push them to Qa if a is not yet full in line 15. We then push a paired with the
next user in Qa into H if a is not yet full in line 17.

Example 3 Back to our running example in Example 1. We first make an initial arrange-
ment and first visit a1. Since u6 has the least number of friends, we add u6 with its friend
u4 to M(a1). We then update the degrees of the remaining users and P . We then visit
a2. Since now u5 is one of the users with the least number of available friends, which
are u2 and u3, we next add u5 with its one of its friend u3 to M(a2). After the initializa-
tion step, we start to make arrangement greedily. We first construct Q for each activity,
which results in Q(a1) =< u1, u2 >, Q(a2) =< u2, u1 >. Then after initializing H ,
we obtain H =< (a1, u1) : (0.345, 0.54), (a2, u2) : (0.44, 0.66) >. That is, a1 has the
minimum current normalized score 0.345, and will have normalized score 0.54 if u1 is
added to M(a1). We then keep trying to add a pair to M during each iteration. In the
1st iteration, the pair (a1, u1) is popped from H . Since u1 has a friend u4 in M(a1), u1
is added to M(a1) and M(a1) = {u1, u4, u6}. We then update Q(a1) =< u2 > and
H =< (a2, u2) : (0.44, 0.66), (a1, u2) : (0.54, 0.72) >. Then in the 2nd iteration, (a2, u2)

is popped from H . Since u2 has friends u3 and u5 in M(a2), we add u2 to M(a2). The final
arrangement is M(a1) = {u1, u4, u6},M(a2) = {u2, u3, u5} and has minimum normalized
utility score of 0.54.

Complexity analysis For the initialization step, there are |A| iterations and it takes at most
O(|U |) time to update P during each iteration. Thus, the time complexity of the initializa-
tion step is O(|A||U |). Since each activity-user pair is pushed into H for at most twice, the
number of iterations is at most O(|A||U |). As there are at most |A| elements in H , during
each iteration, it takes �(log|U |) time to pop a pair from or push one into H . It also takes
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O(δ) time to find a friend in M(a) and O(|U |2) to time to find a friend in C(a). In overall,
the time complexity of the Greedy algorithm is O(|A||U |(|U |2 + log|U | + δ)).

3.3 Random+Greedy algorithm

In this subsection, we present another heuristic algorithm that integrates the aforementioned
random idea into the Greedy Algorithm, which we call Random+Greedy (RG). We again
make an initial arrangement based on Algorithm 2 and then visit each activity a ∈ A in
a random order and use the threshold θ to indicate when we should stop processing each
a. Unlike the baseline algorithm in which we randomly pick up some unarranged users,
we greedily add users to M(a). More specifically, given a shuffle-ordered list A′ of A, we
visit each ai in A′ in order. For each ai , we visit each unarranged users u ∈ U in non-
ascending order of μ(ai, u). Then for each uj we visit, we process it as we make the random
arrangement in the baseline algorithm.

We illustrate the procedure in Algorithm 4, which is similar to Algorithm 1, except that
we make an initial arrangement using Algorithm 2 and visit each unarranged u in a certain
order instead of visiting u with a probability.

Example 4 Back to our running example in Example 1. We first make an initial arrange-
ment, which results in M(a1) = {u3, u5},M(a2) = {u4, u6}. After initialization, we visit
each a in the order of a2, a1. For a2, the threshold θ = 2, and thus we do not make
additional arrangement for a2. Then for a1, unassigned u1 has the largest utility score
and has the friend u2 in M(a1). Thus, u1 is added to M(a1). The final arrangement is
M(a1) = {u1, u3, u5},M(a2) = {u4, u6} and has minimum normalized utility score of 0.4.

Complexity analysis Similar to the Baseline algorithm, the worst-case time complexity
of the RG algorithm is O

(|A||U |3).
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3.4 Local-search-based optimization

Notice that after making the arrangement using the three algorithms we present above, some
users may not be assigned to any activity, and the activity with the minimum normalized
utility score, i.e. the bottleneck activity, may still have space to accommodate more users.
Therefore, we next propose a local search algorithm that tries to increase the normalized
utility score of the bottleneck activity.

The basic idea of the local search algorithm is that if the bottleneck activity is not
yet full of capacity, we try to add unassigned users or move assigned users from other
activities to the bottleneck activity to increase its normalized utility score without decreas-
ing the overall minimum normalized utility score. More specifically, we iteratively try to
improve the arrangement of the bottleneck activity a. We first try to add unassigned users
to a if they have friends in M(a). If no unassigned user can be added to M(a), we then
search other activities and try to re-arrange their users to a. Particularly, we visit each
activity a′ in non-ascending order of their normalized utility scores. If there exists a user
u′ ∈ M(a′) s.t. removing u′ from M(a′) will not lead to a smaller minimum normal-
ized utility score and u′ can be added to M(a), we re-arrange u′ to a to increase the
normalized utility score of the bottleneck activity. We then proceed to the next iteration
to improve the arrangement of the new bottleneck activity until no improvement can be
made.

We illustrate the procedure in Algorithm 5. We iteratively try to improve the arrangement
of the bottleneck activity. In line 2, we find the bottleneck activity a. We then check whether
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some unassigned users can be arranged to a in lines 5-8. If not, we then try to re-arrange an
assigned user to a in lines 10-17.

Example 5 We use the arrangement returned by Example 2 as example. Recall that after
running the baseline algorithm, we have arrangement M(a1) = {u2, u5},M(a2) = {u3, u4}.
Since the current bottleneck activity is a2, we try to improve M(a2) in the 1st iteration.
Since unassigned user u1 has friends u3 and u4 in M(a2), we assign u1 to M(a2) and
M(a2) = {u1, u3, u4}. Since AveM(a1) = 0.41 and AveM(a2) = 0.62, a1 becomes the
new bottleneck activity and we next try to improve M(a1). Since unassigned user u6 has
no friend in M(a1), we try to find a user in M(a2). We find that u3 ∈ M(a2) has friends
u2 and u5 in M(a1) and removing u3 from M(a2) will not result in a lower minimum
normalized utility score than 0.41. Thus, we move u3 from M(a2) to M(a1), and M(a1) =
{u2, u3, u5},M(a2) = {u1, u4}. Now AveM(a1) = 0.61 and AveM(a2) = 0.45, we next
try to improve M(a2). We then add unassigned user u6 to M(a2). The final arrangement is
M(a1) = {u2, u3, u5},M(a2) = {u1, u4, u6} and has minimum normalized utility score of
0.61.

4 Solutions for extension of BSEA

In this section, we present extended solutions for the extension of BSEA problem where
users can attend multiple activities.

4.1 Extended baseline algorithm

To extend the baseline algorithm to the cases where users can attend multiple activities, we
maintain the remaining capacity of each user and only assign users with non-zero remaining
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capacities to an activity. We call this algorithm BaselineExt and illustrate the procedure in
Algorithm 6. And the threshold θ is modified as follows.

θ =
⌊

δai

∑
u δu∑

a δa

⌋
(5)

The main procedure is similar to Algorithm 1. The difference is that we check the avail-
ability of uj in line 5 and update the capacities of the newly assigned users in lines 9 and
13, respectively.

Complexity analysis The time complexity of the BaselineExt algorithm is the same as
that of the baseline algorithm, which is O

(|A||U |3).
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4.2 Extended greedy algorithm

Recall that we make an initial arrangement in the original Greedy algorithm. To extend the
Greedy algorithm, we also make extension to the initialization step. More specifically, we
keep updating the remaining capacities of users and remove users who are full of capacity or
have no available friend from the sorted list L. For the extended Greedy algorithm, we also
maintain the capacities of users and only assign users with non-zero remaining capacities to
an activity.

We illustrate the procedure in Algorithm 7 and Algorithm 8. Algorithm 7 illustrates the
extended initialization procedure of M . Particularly, the difference from Algorithm 2 is that
we update the remaining capacities of users and remove users from P when they are full
of capacity in line 6. Algorithm 8 illustrates the extended Greedy algorithm GreedyExt.
Different from Algorithm 3, we check the validity of a user by its remaining capacity in line
6 and update the capacities of the users who are added to the arrangement in line 9 and 13,
respectively.

Complexity analysis Similar to Algorithm 2 and Algorithm 3, the extended initializa-
tion step has time complexity O(|A||U |) and the extended Greedy algorithm has time
complexity O(|A||U |(|U |2 + log|U | + δ)).

4.3 Extended random+greedy algorithm

We then extend the Random+Greedy algorithm, named as the Random+GreedyExt (RGExt)
algorithm. We again make an initial arrangement based on Algorithm 7. Then in the
extended Random+Greedy algorithm, we again keep updating the remaining capacities of
users and assign a user to an activity only when s/he has non-zero remaining capacity. We
illustrate the procedure in Algorithm 9. Different from Algorithm 4, in line 5, L only stores
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users with non-zero remaining capacities. Also, we update capacities of users who are added
to the arrangement in lines 10 and 14, respectively.

Complexity analysis Similar to the Random+Greedy algorithm, the worst-case time
complexity of the RGExt algorithm is O

(|A||U |3).

4.4 Extended local-search-based optimization

We finally present the extended Local Search algorithm. Similar to the previous extended
algorithms, we check the validity of users by their remaining capacities and update their
capacities whenever they are assigned to an activity. We illustrate the procedure in Algo-
rithm 10. Different from Algorithm 4, we only add users with non-zero capacities to the
arrangement and update the capacities of the users who are added to the arrangement in
lines 7, 10 and 17, respectively.

5 Experimental evaluation

5.1 Experiment settings

In this subsection, we evaluate our proposed algorithms. We first present the settings of the
experimental study.
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Table 3 Synthetic dataset

Factor Settings

|V | 100, 200, 300, 400, 500

|U | 1000, 2000, 3000, 4000, 5000

δa N (25, 10), N (50, 10), N (75, 10), N (100, 10), N (125, 10)

δu Normal, mean=1, 2, 3, 4, 5, variance=2
|F |

|U |(|U |−1)/2 0.01, 0.05, 0.1, 0.15, 0.2

α 0.1, 0.2, 0.3, 0.4, 0.5

Scalability |V | = 1000, |U | = 4K, 6K, 8K, 10K, 12K

mean of δa = 50, density of graph = 0.0005

Datasets We use both real and synthetic datasets for the experiments. The real dataset is
the Meetup dataset from [13]. In this dataset, each user is associated with a set of tags and a
location. Each activity in the dataset is also associated with a location, and we use the tags
of created group as the tags of the corresponding activity. The Meetup dataset consists of
225 activities and 2012 users.

For synthetic data, we generate attribute values and locations following Uniform distri-
bution, and generate capacities of activities following Normal distribution. Statistics and
configuration of synthetic data are illustrated in Table 3, where we mark our default set-
tings in bold font. Note that the generated capacity values are converted to integers. Since
the Meetup dataset does not contain social information, we generate social graphs syntheti-
cally for both real and synthetic datasets. Specifically, the social graph is generated using a
function from the python-graph library4 with varying density of the graph. The statistics of
the real dataset are presented in Table 4.

Furthermore, all algorithms are implemented in C++, and the experiments were per-
formed on a machine with Intel i7-2600 3.40GHZ 8-core CPU and 8GB memory.

5.2 Experiment results

In this section, we mainly evaluate the proposed algorithms in terms of Min Ave, running
time and memory cost, and test the performance of proposed algorithms via varying the
following parameters: the size of A, the size of U , δa and δu, the density of graph and the
balance parameter α. We explain the notations of the algorithms we use in the results in
Table 5.

Effect of |A| We first study the effect of varying |A|. We present the results for BSEA
in Figure 2a–c and those for Extended BSEA in Figure 2d–f. We can first observe that the
Min Ave values decrease with increasing size of A. The reason is that the number of users
is limited and thus when the number of activities increases, less users are available to each
activity on average. Also, we can observe that the Greedy-based algorithms, i.e. Greedy and
GreedyO, perform the best in term of Min Ave values but worst in terms of running time
and memory, while the baseline algorithm performs the worst in term of Min Ave values.
Another observation is that the Local Search optimization greatly improves the results of the

4https://code.google.com/p/python-graph/

https://code.google.com/p/python-graph/
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Table 4 Real dataset

City |A| |U | δa δu
|F |

|U |(|U |−1)/2 α

Vancouver 225 2012 N (25, 10) N (3, 2) 0.01 0.05 0.1 0.15 0.2 0.2

baseline and the Random+Greedy algorithms without consuming much additional running
time or memory.

Effect of |U | We then study the effect of varying |U |. We present the results for BSEA
in Figure 2g–i and those for Extended BSEA in Figure 2j–l. We can first observe that the
Min Ave values generally increase with increasing size of A, which is reasonable as more
users are available to the activities. However, we can observe that the Min Ave values do not
increase much for Extended BSEA. One possible reason is that for Extended BSEA, users
can attend multiple activities and thus the activities may have been saturated even when the
number of users is small. We can again observe that the Greedy-based algorithms perform
the best in overall in term of Min Ave values and the Local Search optimization technique
can improve the results significantly especially when the initial results are bad.

Effect of δa We then study the effect of varying δa . Particularly, we vary the mean of δa ,
which is generated according to the Normal distribution. We present the results for BSEA
in Figure 3a–c and those for Extended BSEA in Figure 3d–f. We can first observe that
the Min Ave values decrease when the mean of δa increases. This is reasonable since with
increasing δa , the Ave scores of activities will decrease. Also, the Greedy-based algorithms
again achieves the best Min Ave results and the Local Search optimization technique are
both effective and efficient.

Effect of δu We next study the effect of varying δu for Extended BSEA. Again, we vary the
mean of δu, which is generated following the Normal distribution. We present the results in
Figure 3g–i. We can observe that the Min Ave values do not increase much with increasing
mean of δu. One possible reason is that the activities may have been saturated even when δu

is small as users can attend multiple activities. We can again observe that the Greedy-based
algorithms are best in term of Min Ave values but worst in running time and memory. Also,
the Local Search optimization technique is effective especially when the initial arrangement
is far from optimal.

Table 5 Notations of algorithms

Notation Algorithm

BaselineO Baseline + local search optimization

BaselineExt Extended baseline

BaselineOExt Extended baseline + Extended local search optimization

GreedyO Greedy + Local search optimization

GreedyExt Extended greedy

GreedyOExt Extended greedy + Extended local search optimization

RGO Random+greedy + Local Search Optimization

RGExt Extended random+greedy

RGOExt Extended random+greedy + Extended local search optimization
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Figure 2 Results on varying |A| and |U |

Effect of density of G We then study the effect of the density of G. Particularly, we vary
|F |/(|U |(|U |−1)/2), which reflects the density of G. The results for BSEA are presented in
Figure 4a–c and those for Extended BSEA are presented in Figure 4d–f. We can first observe
that the Min Ave values increase when |F |/(|U |(|U | − 1)/2) increases from 0.01 to 0.05
for BSEA. However, when the graph becomes denser, the Min Ave values do not change
too much in overall. One possible reason is that the number of available users is limited and
thus increasing the density of the social graph cannot improve the results too much. We can
again observe that the Greedy-based algorithms achieve better Min Ave results but worse
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Figure 3 Results on varying mean of δa and δu

running time and memory. Also, the Local Search optimization technique is again effective
and efficient.

Effect of α We next study the effect of varying α. The results for BSEA are presented
in Figure 4g–i and those for Extended BSEA are presented in Figure 4j–l. We can first
observe that the Min Ave values do not change much with varied α. Again, the Greedy-
based algorithms are best in term of Min Ave values and the Local Search optimization
technique is effective when the original arrangement is far from optimal.

Real dataset We then study the results on the real dataset. We present the results for BSEA
in Figure 5a–c and those for Extended BSEA in Figure 5d–f. We can observe that the results
have similar trending patterns as those for the synthetic dataset in Figure 5a–f.

Scalability We finally study the scalability of the algorithms. The settings of some param-
eters are presented in Table 3, and the other parameters are set to default values. We present
the results for BSEA in Figure 5g–i and those for Extended BSEA in Figure 5j–l. We
can observe that all the algorithms run very fast even when the dataset is larger. We can
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Figure 4 Results on varying density of G and α

also observe that the baseline and the Random+Greedy-based algorithms are still the most
efficient algorithms. Finally, the algorithms except Greedy and GreedyO consume little
memory in addition to the memory consumed by input data.

Comparison between BSEA and SEO [14] We compare with the best algorithm of the
SEO problem, i.e. the PCADG algorithm. Notice that the objective function and the con-
straints of our problem are both different from those of the SEO problem. Particularly, our
objective function is to maximize the minimum of the weighted linear combination of the
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Figure 5 Results on real dataset and scalability test

similarity score and the spatial distance score for an activity, but the objective function of
the SEO problem is to maximize the sum of the weighted linear combination of the simi-
larity score and the social affinity score between each activity and user in the arrangement.
Also, one constraint of our problem is that no user is isolated in an activity, i.e. each user has
at least one friend attending the same activity. However, the SEO has no social constraint
but instead a lower bound constraint, i.e. at least γa users are allocated to activity a for the
arrangement to be feasible. Therefore, to compare with PCADG fairly, we adjust the weight
factor α in both objective functions, so that both objective functions of our problem and the
SEO problem only consider the similarity score, i.e. α = 0 in both problems. In addition,
we make the social graph a complete graph, and all the activities in the SEO problem have
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Figure 6 Comparison between BSEA and SEO [14]

lower bounds of 2. Therefore, the social constraint of our problem is equivalent to the lower
bound constraint of the SEO problem.

To compare with SEO, we calculate the spatial distance between each pair of user and
activity in the arrangement result. Particularly, we show the sum of distance and also the
average distance of each user-activity pair. Since both the PCADG algorithm of SEO and
our Greedy algorithm allocate an activity for each user but the Random+Greedy and the
Random algorithm fail to allocate an activity for every user, we only compare PCADG with
Greedy. The results are presented in Figure 6a–b. Notice that we also plot the results when
α is varied from 0.1 to 0.5 in our problem to show how the distance between users and
activities vary when the weight of the distance score increases. Particularly, since SEO does
not consider spatial information, only similarity score is considered in PCADG when α

varies, and thus the distance results of SEO do not vary. We can observe that the arrangement
generated by our solution results in both smaller total distance and average distance of
each user-activity pair compared with the PCADG algorithm of SEO particularly when α

increases. Therefore, it indicates that users spend less on traveling when attending activities
according to the arrangement generated by our solutions.

Conclusion All the algorithms are quite efficient and scalable. In particular, the Greedy-
based algorithms perform the best in terms of Min Ave but worst in running time and
memory. Also, the Local Search optimization technique is quite effective and efficient.

6 Related work

In this section, we will review the related works in four categories, event-based social
networks, location-based social networks, spatial matching, and bipartite graph match-
ing/bottleneck assignment problem.

Event-Based Social Networks With the widespread usage of mobile computing and per-
vasive computing techniques, various online event-based social network (EBSN) platforms,
such as Meetup, Plancast, and Eventbrite, are getting popular. Liu et al. [13] is the first
work on studying unique features of EBSNs. Recently, some other issues of EBSNs have
been studied. Some research, such as [5, 9, 32], train datasets of EBSNs to derive learning
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models to recommend events to potential users. However, these works just make recom-
mendation rather than optimizing a global arrangement, which is our goal. Furthermore, [6]
tries to find the most influential event organizers in EBSNs. This study integrates the clas-
sical maximization influence model [10] and the team formation model [15] to discover the
most influential set of organizers. However, the optimization goal of [6] is still different
with that of our problem.

In particular, a closely related work, Social Event Organization (SEO) problem [14], has
been proposed recently. This problem is to maximize the overall innate affinities of users
towards the arranged activities and the social affinity among the users attending the same
activity. However, actually our BSEA problem and the SEO problem are quite different
as the objective function and the constraints of our problem are both different from those
of the SEO problem. Particularly, our objective function is to maximize the minimum of
the weighted linear combination of the similarity score and the spatial distance score for
an activity, but the objective function of the SEO problem is to maximize the sum of the
weighted linear combination of the similarity score and the social affinity score between
each activity and user pair in the arrangement. Also, one constraint of our problem is that
no user is isolated in an activity, i.e. each user has at least one friend attending the same
activity. However, the SEO problem has no such social constraint but instead a lower bound
constraint on the number of attendees. Furthermore, the SEO problem does not consider any
spatial information, but our ESEA problem considers three factors, the location influence,
the similarity of attributes, and the social friendship, simultaneously.

Location-Based Social Networks There are a lot of related studies of this topic in recent
years due to the popularity of location-based social networks (LBSN). For example, [3, 4,
11, 16–18, 21, 30] target at the issue of user-oriented recommendation. These researches
mainly focus on discovering potential preferences of users and then recommend related
events/venues to a single user. In other words, these works do not target at the arrange-
ment optimization problem, which is the main difference with our work. Moreover, [1, 31]
study the problems of query processing over LBSNs. The two studies only consider two fac-
tors, the location information and friendship, and ignore the similarity of attributes between
activities and users.

Spatial Matching In recent years, there have been a series of works about spatial match-
ing, such as [19, 20, 22, 25, 28]. These works aim to integrate spatial information and
capacities of spatial objects into the weighted bipartite matching scenario. For example, [28]
uses the problem of stable marriage as its optimization goal, and [19] chooses the sum of
total scores in the weighted bipartite matching as its optimization goal. Since these works
only consider the location information and capacities of objects and neglect the friendship
information of social network, they are significantly different with our work.

Bipartite Graph Matching and Bottleneck Assignment Problem Bipartite graph
matching and assignment problems have been widely studied for decades. The related
researches have been surveyed by the following books [2, 29]. Besides classical bipartite
graph matching, another close related work is the bottleneck assignment problem [2]. How-
ever, the original bottleneck assignment problem does not consider the capacity and social
friendship constraints considered in our problem. Thus, existing solutions of the bottleneck
assignment problem cannot address our issue.
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7 Conclusion

In this paper, we identify a novel social event arrangement problem, called bottleneck-aware
social event arrangement (BSEA) problem. We first present the formal definitions of the
bottleneck-aware social event arrangement (BSEA) problem and a variant of the BSEA
problem, called the Extended BSEA problem. Then, we prove that the two proposed prob-
lems are NP-hard. In order to solve the two problems, we devise a baseline algorithm, two
heuristic algorithms, Greedy and Random+Greedy, and a local-search-based optimization
technique. In particular, the Greedy algorithm is more effective but less efficient than the
Random+Greedy algorithm in most cases. Furthermore, the aforementioned solutions can
be modified to address the Extended BSEA problem easily. Finally, we verify the effec-
tiveness and efficiency of the proposed methods through extensive experiments on real and
synthetic datasets.
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